본문 바로가기

OpenAI29

728x90
클로드(Claude) 고급 AI 어시스턴트 특장점 및 가격 비표 검토 Claude는 Anthropic에서 개발한 고급 AI 어시스턴트입니다. Anthropic은 OpenAI의 전 직원들이 설립한 회사로, AI의 안전성과 윤리에 중점을 두고 있습니다. Claude라는 이름은 정보 이론의 아버지로 알려진 클로드 섀넌(Claude Shannon)에서 따왔습니다.배경 및 개발기원: Anthropic은 Dario Amodei, Daniela Amodei 등 OpenAI의 전 연구원들이 설립했습니다. 이들은 AI 안전성과 윤리에 중점을 두고자 했습니다.이름의 유래: Claude라는 이름은 정보 이론의 선구자인 클로드 섀넌(Claude Shannon)에서 따왔습니다.목적: Anthropic의 목표는 인간의 의도에 맞고 안전하며 해석 가능한 AI를 개발하는 것입니다. 이는 AI의 안전성.. 2024. 9. 30.
LangChain 활용하여 문서 기반 응답 챗봇(Chatbot) 만들기 LangChain을 통해 문서 검색 챗봇을 만드는 가이드를 초보자도 따라할 수 있도록 단계별로 자세히 정리하겠습니다.1. 환경 설정 및 필요한 패키지 설치먼저 필요한 패키지를 설치합니다. 다음 명령어를 실행하세요.!pip install -q grobid-client langchain openai faiss-cpu PyPDF2 tiktoken2. OpenAI API Key 설정OpenAI API 키를 생성하고 환경 변수에 설정합니다.OpenAI API Key 생성 페이지에서 키를 생성합니다.아래 코드를 사용하여 키를 설정합니다.import openaiimport osos.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"3. PDF 파일 다운로드 및 전처리예제.. 2024. 8. 12.
워크플로우 자동화 툴을 통한 취약점 점검 및 대응 자동화 수행 n8n은 워크플로우 자동화 툴로, 다양한 API, 데이터베이스, 그리고 시스템과 연동하여 복잡한 작업을 자동화할 수 있습니다. 서버 취약점 점검 결과를 분석하고 처리하는 것도 n8n을 활용하여 가능합니다. n8n을 사용하여 보안 취약점 데이터를 처리하는 기본적인 접근 방식은 다음과 같습니다.데이터 수집: n8n은 HTTP 요청, 데이터베이스 쿼리, 파일 읽기 등 다양한 방법으로 취약점 점검 결과 데이터를 수집할 수 있습니다.데이터 가공: 수집한 데이터에 대해 JavaScript 코드 노드를 사용하거나 내장된 데이터 변환 기능을 사용하여 필요한 가공을 수행할 수 있습니다. 예를 들어, 동일한 유형의 취약점을 통합하거나, 특정 조건에 따라 불필요한 항목을 제거하는 작업 등을 자동화할 수 있습니다.결과 분석 .. 2024. 6. 9.
네트워크 패킷 실시간 수집분석 효율적인 중복제거 및 특이사항 필터링 네트워크 패킷을 syslog를 통해 수집할 때, 데이터의 양이 많아 중복 항목을 효율적으로 제거하는 방법(Network Packet Deduplication Strategies)은 여러 가지가 있습니다. 중복 데이터를 제거하는 것은 저장 공간을 절약하고, 분석을 더 빠르고 정확하게 만들어줍니다.해시 함수 사용: 각 패킷에 대한 해시 값을 계산하고, 이 값을 기반으로 중복을 확인합니다. SHA-256 또는 MD5와 같은 해시 함수를 사용하여 각 패킷의 고유한 지문을 생성할 수 있습니다. 이 방법은 데이터의 무결성 검사에도 유용합니다.데이터 정규화: 데이터를 분석하기 전에, 가능한 한 모든 패킷을 표준 형식으로 정규화합니다. 이것은 IP 주소, 타임스탬프 등의 필드에서 발생할 수 있는 미세한 차이를 제거하여.. 2024. 5. 15.
OpenAI ChatGPT 모델 Fine-tuning 진행 과정 OpenAI의 ChatGPT 모델을 Fine-tuning하는 과정은 여러 단계로 이루어집니다. 여기서는 고급 사용자를 위한 OpenAI의 기술 문서와 예제를 기반으로 한 개요를 제공할 것입니다. 이 과정은 데이터 준비부터 실제 Fine-tuning, 그리고 평가까지 포함됩니다.1. 목표 정의 및 데이터 준비목표 설정: Fine-tuning의 목적을 명확히 합니다. 예를 들어, 특정 주제에 대한 대화의 품질을 향상시키거나, 특정 양식의 텍스트를 생성하도록 모델을 맞춤화할 수 있습니다.데이터 수집: Fine-tuning에 사용할 텍스트 데이터를 수집합니다. 이 데이터는 모델이 학습할 예제로, 원하는 출력과 함께 입력 텍스트를 포함해야 합니다.데이터 정제: 수집한 데이터에서 노이즈를 제거하고, 필요한 형식으로.. 2024. 5. 6.
728x90
728x90